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Equilibrium	β-limit	in	stellarators	is	unknown

[M. Drevlak et al, NF, 2005]

Ø β-limit probably determined by the equilibrium, not its stability.

Ø Possible degradiation of flux-surfaces at high β.

Ø Need for a robust, reliable, and fast code.

Ø SPEC follows the “equilibrium philosophy”, namely it addresses the question: 

[P. Helander et al, PPCF, 2012]

Ø Ongoing parallel efforts:

Ø HINT [Y. Suzuki et al, NF, 2006]

Ø SIESTA [S. Hirshman et al, PoP, 2011]

Ø SPEC [S. Hudson et al, PoP, 2012]

What is the equilibrium magnetic field that is consistent with the 

established equilibrium pressure and toroidal current profiles?

Ø My philosophy to approach an understanding of β-limits:

Use numerical experiments to guide our theories towards a distilling of the physics



Uses variational principle to find
equilibria with islands:
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Stepped-Pressure	Equilibrium	Code	(SPEC)

SPEC runs in different geometries

3

Input

Boundary geometry
+

Two profiles

Output

B-field in each volume
+

Shape of KAM surfaces



Consider	l = 2 stellarator	with	simple	pressure	pedestal
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Consider a rotating-ellipse stellarator: 
Boundary

Pressure	vs Flux

Transform	vs FluxCurrent	vs Flux

Ø Simplest model of a pedestal

Ø 2 maximally-relaxed force-free volumes

Ø SPEC naturally describes this system

Ø VMEC can be used with steep-but-not-stepped pressure 

ψ

𝑰𝛗

µ2 = 0µ1 = 0

ψa ψedge

Ø Zero-net-toroidal-current

Ø No control on transform

Ø Expect ιa+ ≠ ιa-

Ø Local control on transform

Ø No control on current

Ø Expect surface	current	

ZERO-NET-CURRENT FIXED-IOTA
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Ideal β-limit scaling:

[Freidberg, Ideal MHD, 2014]
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Zero-net-current	versus	Fixed-iota

ZERO-NET-CURRENT FIXED-IOTA

Ø Shafranov shift increases with β in both cases. 

Ø 𝚫ax increases faster for the zero-net-current stellarator.

Ø A separatrix forms at β ≈ 0.4% in the zero-net-current stellarator. 

Ø Islands and chaos emerge at β ≈ 1.4% in the fixed-iota stellarator. 



Expected	scaling	of	β0.5	is	reproduced	in	all	cases	

6

Ø β0.5 : beta at which Shafranov shift of the axis is half the minor radius.

slope = 2

slope = 1

Ø Small amount of current provides access to higher β. 

Ø In all cases, β0.5  scales as expected in ideal-MHD. 

Stellarator �-limits 5

radius. According to ideal-MHD equilibrium theory (Miyamoto 2005), �
0.5

is predicted
to scale as

�
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p

R
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for large aspect ratios, ✏ ⌧ 1, and slowly varying ◆-
v

, which is true for N
p

⇠ 1. A scan in
both R

00

and N
p

has been carried out in order to assess how �
0.5

scales in the numerical
MHD calculations. Figure 3 shows the result of this scan. Despite the fact that SPEC
allows for plasma relaxation, the scaling law (3.2) is very well reproduced in both modes
of operation; except at high values of ✏ ⇠ 1/R
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and N
p

, for which the scaling law ceases
to be valid. Moreover, the values of �

0.5

are much higher in the fixed-iota stellarator, by
a factor of about 6. This reflects, once again, the fact that the Shafranov shift increases
faster in the zero-net-current stellarator.

In Sec. 4, the fundamental, macroscopic di↵erences between the two modes of operation
are explained in terms of the High-Beta-Stellarator (HBS) model developed in (Freidberg
2014). In Sec. 5, we attempt at describing and predicting the �-induced generation of
islands and chaotic field-lines in the fixed-iota stellarator (Figure 2).

4. Ideal �-limit and the HBS theory

The HBS model for a classical stellarator developed in (Freidberg 2014) and briefly
summarized in Appendix A predicts that the rotational transform at the plasma edge,
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a

, evolves with � and plasma current as

◆-
a

= (◆-
v

+ ◆-
I

)
�
1� ⌫2

�
1/2

(4.1)

where ◆-
I

is the transform produced by the net toroidal current,

◆-
I

=
µ
0

I
'

R
0

2⇡a2B
0

, (4.2)

and

⌫ =
�

✏
a

(◆-
v

+ ◆-
I

)2
, (4.3)

where a is the e↵ective minor radius of the plasma edge and ✏
a

= a/R. For our system,
we have a =

p
 

a

/ 
edge

r
e↵

and thus ✏
a

=
p
 

a

/ 
edge

✏.
In the context of the HBS theory, the zero-net-current stellarator can be analyzed

by taking ◆-
I

= 0. Equation (4.1) then implies that ◆-
a

decreases with increasing �.
This is visible in Figure 4, where the profile ◆-( ) obtained from SPEC at finite � is
shown and compared to the vacuum transform. A jump in the rotational transform self-
consistently develops on the ideal interface supporting the pressure gradient, namely at
 

a

= 0.3 
edge

. The ideal MHD equilibrium code VMEC (Hirshman & Whitson 1983)
was also run for this case with a pressure pedestal of small but finite width (the calcula-
tion requires a rather hight radial resolution, with about 3000 flux surfaces) and shown
to produce essentially the same transform profile.

In Fig. 5, the value of ◆-
a

is shown as a function of � and compared to the HBS predic-
tion, Eq. (4.1), showing fairly good agreement (notice that there are no free parameters).
The agreement is even more remarkable if we notice that the HBS model assumes a
circular cross-section and uses Solov’ev pressure profiles. In Appendix A, we show that
adapting the theory to the case of a stepped-pressure profile produces very similar pre-
dictions (see Fig. 5). This reflects the fact that the macroscopic equilibrium depends on

more compact more field periods

[Myamoto 2005]



7

HBS	theory	explains	macroscopic	differences	
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ZERO-NET-CURRENT FIXED-IOTA

Ideal MHD: Ideal MHD: no β-limit

[Freidberg, Ideal MHD, 2014]
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HBS	theory	explains	macroscopic	differences	
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HBS	theory	explains	macroscopic	differences	
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A	theory	for	the	non-ideal	β-limit	

Ø Expect that chaos emerges due to the overlaping of islands. [Chirikov, Phys Reports, 1979]

Ø Expected island width due to a resonance is: 
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to the Chirikov criterion (Chirikov 1979). That requires, however, predicting which res-
onances appear first and how does the width of the corresponding islands grow with �.
While we intend to investigate this question in more detail in the future, we derive here a
criterion based on the following general idea. The expected width of an island generated
by a resonance at ◆- = n/m is expected to scale as w ⇠pB

mn

/(m◆-0) (Boozer 2004). Thus,
new resonances can appear at finite � due to (i) a change in the rotational transform,
or (ii) a change in the harmonic content of B inevitably caused by the Shafranov shift.
As � increases, the net toroidal current increases and modifies the rotational transform
by increasing its value in the region  

a

<  <  
edge

(data not shown). The rising of ◆-
allows new resonances to appear (and with lower values of m). At this point we make
the following hypothesis: the emergence of chaos may occur when the perturbations in
the poloidal field due to finite toroidal current are comparable to the vacuum poloidal
field. Namely, chaos may emerge when ◆-

I

(�) ⇠ ◆-
v

. From the HBS theory we know that
◆-
I

increases with � according to Eq. (4.5), hence applying our constraint we have
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= 5, and �
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= 10, thus in excellent agreement with the observed transition to chaos (see
Fig.8). More importantly, Eq. (5.4) predicts that the non-ideal equilibrium �-limit scales
exactly as the ideal equilibrium �-limit but with a larger factor in front, of the order ofp
12 ⇡ 3.5.

[Boozer, Rev Mod Phys, 2004]

Ø As β increases, I𝛗 increases and modifies the rotational transform. 

Ø Hypothesis: islands and chaos will emerge when: 
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Ø Inserting ansatz in HBS theory for the current,
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Conclusions	and	perspectives

Ø Basic study of equilbrium β-limit indicates that

1. Macroscopic features behave as predicted by ideal-MHD

2. Zero-net-current stellarator behaves “ideally”

3. Fixed-iota stellarator (I𝛗 > 0) shows “non-ideal β-limit”

Ø SPEC has been used to assess whether or not magnetic islands and

chaos can emerge at high β in simple stellarators configurations.

We studied “worst-case-scenario” of

maximum relaxation: how to incorporate the 

possibility of pressure-induced island-healing?

Can we extend the theory to more complex 

geometries and non-trivial pressure profiles?



Non-trivial	pressure	profile	(low	resolution)
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W7-X	OP1.1	limiter	configuration	(low	resolution)
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This is not an experimental prediction. This simlpy emphasizes that the
equilibrium β -limit may be determined as in simpler geometries.


